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Abstract.
Background: Distinguishing between subjective cognitive decline (SCD), mild cognitive impairment (MCI), and dementia
in a scalable, accessible way is important to promote earlier detection and intervention.
Objective: We investigated diagnostic categorization using an FDA-cleared quantitative electroencephalographic/event-
related potential (qEEG/ERP)-based cognitive testing system (eVox� by Evoke Neuroscience) combined with an automated
volumetric magnetic resonance imaging (vMRI) tool (Neuroreader� by Brainreader).
Methods: Patients who self-presented with memory complaints were assigned to a diagnostic category by dementia special-
ists based on clinical history, neurologic exam, neuropsychological testing, and laboratory results. In addition, qEEG/ERP
(n = 161) and quantitative vMRI (n = 111) data were obtained. A multinomial logistic regression model was used to determine
significant predictors of cognitive diagnostic category (SCD, MCI, or dementia) using all available qEEG/ERP features and
MRI volumes as the independent variables and controlling for demographic variables. Area under the Receiver Operating
Characteristic curve (AUC) was used to evaluate the diagnostic accuracy of the prediction models.
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Results: The qEEG/ERP measures of Reaction Time, Commission Errors, and P300b Amplitude were significant predictors
(AUC = 0.79) of cognitive category. Diagnostic accuracy increased when volumetric MRI measures, specifically left temporal
lobe volume, were added to the model (AUC = 0.87).
Conclusion: This study demonstrates the potential of a primarily physiological diagnostic model for differentiating SCD,
MCI, and dementia using qEEG/ERP-based cognitive testing, especially when combined with volumetric brain MRI. The
accessibility of qEEG/ERP and vMRI means that these tools can be used as adjuncts to clinical assessments to help increase
the diagnostic certainty of SCD, MCI, and dementia.
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INTRODUCTION

As the older adult population in the U.S. con-
tinues to grow, the incidence rate of dementia due
to Alzheimer’s disease (AD) and other causes is
expected to increase proportionally. As of 2022, there
are approximately 6.5 million older adults aged 65 or
older with AD, and that number is expected to rise
to 12.7 million in 2050 [1]. Early identification of
dementia must be prioritized to implement preventa-
tive care and offset future interpersonal and financial
stressors for patients and care providers. Simple
cognitive tests like the Mini-Mental Status Exam
(MMSE) and the Montreal Cognitive Assessment
(MoCA) are widely available and easily administered
by primary care practitioners but may have rela-
tively low sensitivities and specificities, especially
with respect to mild cognitive impairment (MCI) [2,
3]. There is a lack of diagnostically accurate tools
for assessing memory loss without specialists, which
can lead to delay in diagnoses. Considering the lim-
itations of available diagnostic methods, there exists
considerable demand for new tools to distinguish
between subjective cognitive decline (SCD), MCI,
and dementia in clinical practice.

Early detection of cognitive decline leading
to dementia can include magnetic resonance
imaging (MRI), positron emission tomography
(PET), biomarker analysis drawn from cerebrospinal
fluid (CSF), and comprehensive neuropsychologi-
cal assessment [4–6]. Structural MRI, specifically,
has a large body of evidence identifying a signature
atrophy pattern in AD, characterized by extensive
left-lateralized volume loss in the hippocampus and
the broader medial temporal lobe (MTL) compared to
healthy, age- and gender-matched controls [7, 8]. Fur-
ther, models combining MTL atrophy with measures
of memory function are more predictive of SCD,
MCI, and dementia than either feature alone [9–11].
However, not all patients may receive objective mem-

ory testing, as neuropsychological assessments can
be expensive or inaccessible in underserved areas [4].
Additional structural markers, such as PET and CSF
analysis, can further aid predictive models, but they
may not accurately capture the distinction between
the various stages of cognitive impairment [12, 13].

For these reasons, quantitative electroencephalog-
raphy (qEEG) has become a promising diagnostic
adjunct. Mobile, noninvasive, and relatively inexpen-
sive, qEEG is a cortical mapping tool that is being
implemented for the early detection and ongoing clin-
ical management of dementia. There is significant
evidence that qEEG-based biomarkers can be used to
classify MCI and dementia, especially using event-
related potentials (ERPs), which are time-sensitive
brain responses to specific motor, cognitive, or sen-
sory events [14–18]. The study of cognitive processes
using P300, an ERP component that surfaces specif-
ically around 250–500 ms, is commonly done using
an oddball paradigm, in which high frequency “non-
target” stimuli and low frequency “target” stimuli
are presented in a random order [19]. This design
requires sustained attention and precise task exe-
cution and thus is highly effective in examining
cognitive deficits over time [20]. Notably, dementia
severity and early-stage neuropathology have been
correlated with trackable changes in P300 ampli-
tude and latency [21]. Recent research has also found
that P300 latency increases in the progression from
normal cognition to MCI to dementia, while P300
amplitude decreases significantly during the progres-
sion from MCI to dementia [22–24]. In addition, ERP
studies collected during an oddball task have been
shown to reflect increasing degrees of SCD, with
lower P300 amplitudes correlating with more self-
reported symptoms and lower cognitive performance
measures [25].

Although there has been extensive recent research
into the individual use of qEEG/ERP and volumetric
MRI (vMRI) neuroimaging to assess SCD, MCI, and
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dementia, there is little existing study of the diagnos-
tic utility of combining them. The current study seeks
to address this gap by analyzing both qEEG/ERP
and volumetric MRI data within a real-world clini-
cal sample to determine whether they can accurately
classify patients into their cognitive diagnostic cate-
gory (SCD, MCI, or dementia). The objective of this
study is to investigate whether these tools can be used
as adjuncts to simple cognitive tests already available
to practitioners in primary care settings.

METHODS

Participants

With approval from the St. John’s Cancer Institute
Institutional Review Board (Protocol JWCI-19-1101)
and in accord with the Helsinki Declaration of 1975,
retrospective chart review was done on patients
aged 55 and older seen at the Pacific Brain Health
Center in Santa Monica, CA between July 2018
and February 2021. Authors ASG, RMG, THB,
SM, and DAM read and reviewed patient medi-
cal records through an Electronic Medical Record
(EMR) system and manually compiled relevant
data into a de-identified database for analysis. As
part of presenting to a specialty memory clinic
with memory complaints, patients were evaluated
by a dementia specialist and assigned to a diag-
nostic category (see the Diagnoses of SCD, MCI,
and dementia section below). In addition, patients
underwent testing with an FDA-cleared quantita-
tive electroencephalographic/event-related potential
(qEEG/ERP)-based cognitive testing system (eVox�

by Evoke Neuroscience). Of 161 patients with
qEEG/ERP data, 69 were categorized with SCD,
53 with MCI, and 39 with dementia due to AD

with or without other contributing factors (e.g., vas-
cular disease; see Table 1). A subset (n = 111) of
the 161 patients had brain MRI scans with auto-
mated quantification of regional brain volumes using
Neuroreader� by Brainreader, an FDA-cleared tool
validated for use in dementia populations [26]. Forty-
two of these patients had diagnoses of SCD, 39 had
diagnoses of MCI, and 30 had diagnoses of dementia
(see Table 1).

Additional demographic characteristics and clin-
ical data were abstracted from the patient medical
charts, including age at testing, sex, years of educa-
tion, and MMSE scores. If patients did not complete
an MMSE at the time of assessment or did not have
an MMSE score on file (n = 40), MoCA scores were
used and converted to an MMSE equivalent score
using a validated conversion table [27]. We used
the MMSE or MoCA scores on file closest to the
date of qEEG/ERP testing. Because depression can
affect memory and cognition, the presence or absence
of current or prior depression was recorded for all
patients at the time of qEEG/ERP testing and pre-
sented as a clinical characteristic (see Table 1). APOE
test results were only available for 81 of the 161 par-
ticipants (and 63 of the 111 subset with vMRI data)
for reasons ranging from cost, lack of insurance cov-
erage, and privacy concerns.

Diagnosis of SCD, MCI, and dementia

Board-certified dementia specialists (VRP and
DAM) used standard clinical methods, including clin-
ical history (e.g., hypertension, diabetes, head injury,
and depression), neurological examination, cogni-
tive testing (i.e., MMSE or MoCA), and laboratory
results (e.g., vitamin B-12, thyroid stimulating hor-
mone, and rapid plasma regain testing) to rule out

Table 1
Demographic and clinical characteristics*

qEEG/ERP Sample (n = 161) qEEG/ERP+vMRI Sample (n = 111)
Dementia MCI SCI Dementia MCI SCI
(n = 39) (n = 53) (n = 69) (n = 30) (n = 39) (n = 42)

Age 74.3 (8.0) 72.8 (6.7) 70.6 (6.5) 73.4 (7.8) 72.5 (6.5) 70.6 (6.1)
Female 28 (71.8%) 22 (41.5%) 40 (58.0%) 24 (80.0%) 14 (35.9%) 25 (59.5%)
Caucasian 36 (92.3%) 47 (88.7%) 65 (94.2%) 27 (90.0%) 36 (92.3%) 38 (90.5%)
Education 16.4 (2.7) 16.5 (2.5) 16.8 (2.3) 15.7 (2.5) 16.6 (2.5) 17.3 (2.0)
MMSE 22.3 (4.4) 27.2 (2.0) 28.7 (1.2) 22.0 (4.9) 27.3 (1.7) 28.8 (1.1)
Depressed∧ 24 (61.5%) 33 (62.3%) 40 (58.0%) 20 (66.7%) 22 (56.4%) 22 (52.4%)
BMI 22.5 (3.4) 25.5 (5.0) 24.5 (3.8) 22.5 (3.3) 25.6 (5.4) 24.2 (3.1)

*Numbers indicate mean with standard deviation (SD) or percentage of subjects (%). MCI, mild cognitive impairment; SCD, subjective
cognitive decline; MMSE, Mini-Mental Status Exam; BMI, body mass index. ∧Current or past diagnosis of depression at the time of
qEEG/ERP testing.
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reversible causes of memory loss and for diagnos-
ing SCD, MCI, and dementia in all patients. We used
MMSE (or MMSE scores converted from MoCA)
to determine evidence of cognitive impairment. In
addition, the criteria provided by Langa and Levine
[2] (see Box 1) were used to diagnose MCI. The
key criteria used to distinguish MCI from demen-
tia were preservation of independence in functional
abilities and lack of significant impairment in social
or occupational functioning. Finally, SCD was diag-
nosed as those participants with subjective cognitive
complaints but without evidence of MCI as defined
above. Diagnostic category was based on the consen-
sus diagnosis between VRP and DAM. For diagnostic
categorization of participants in the current analysis,
neither quantitative MRI nor qEEG/ERP data were
considered. Diagnostic categorization was based on
staging of the clinical syndrome of each patient (as
found in Langa and Levine), not etiology or subtypes
within each stage.

qEEG/ERP data acquisition

All qEEG/ERP data were recorded and col-
lected using the eVox� System (see Supplementary
Table 1). Participants were fitted with a qEEG cap
with 19 electrodes (FP1, FP2, F7, F3, FZ, F4, F8, T7,
C3, CZ, C4, T8, P7, P3, PZ, P4, P8, O1, and O2) posi-
tioned on the scalp in line with the International 10-20
system. The qEEG assessment consisted of a 5-min
“Eyes Open” resting-state condition, a 5-min “Eyes
Closed” resting-state condition, and a 15-min Go-No
Go button-press task to generate ERP data. This task
delivered four types of stimuli: visual deviant oddball
stimulus (a large blue circle); visual standard stimu-
lus (a small blue circle); visual deviant stimulus (a
black and white checkboard); auditory deviant stim-
ulus (a static noise). Each stimulus was presented in
the same randomized order for 100 ms and followed
by a 2100 ms break, and qEEG/ERP data calculated
from the resultant waveforms.

MRI data acquisition

MRI scans were conducted using a GE 3.0 Tesla
scanner for each subject to obtain a comprehensive
volumetric report. MRI data were processed using
the Neuroreader� neuroimaging software, which is
clinically used to extract regional brain volumes and
compare them to healthy age- and gender-matched
controls [28]. Amongst the volumes provided by
Neuroreader�, we used left and right hippocampal,

amygdala, temporal lobe, frontal lobe, and lateral
ventricle volumes in our analyses [29, 30], and all vol-
umes were normalized for total intracranial volume
(TIV).

Statistical analysis

Data were inspected for outliers, normality, homo-
geneity of variance and other assumptions to ensure
their appropriateness for parametric statistical tests.
All qEEG/ERP variables were log-transformed prior
to analyses. Cognitive groups (SCD, MCI, and
dementia) were compared using ANOVAs (con-
tinuous variables) or chi-squared tests (categorical
variables) on all demographic measures.

To determine whether qEEG/ERP and vMRI
measures differentiated cognitive groups, we first
estimated a series of univariate multinomial logistic
regression models, with cognitive group (SCD, MCI,
and dementia) as the dependent variable and each
of the predictors (demographic, clinical, qEEG/ERP,
vMRI) as the independent variable. The aim of
these preliminary analyses was only to select rel-
evant variables for further multivariable analyses;
thus, all variables found to be significant at a level
of p < 0.1 were retained. We then used the stepwise
variable selection method (with an inclusion cut-off
of �=0.05) as a second exploratory way to identify
possible predictors, since some variables may affect
the outcome differently when included in the model
simultaneously. Lastly, we estimated a multivariable
logistic regression model including all the predic-
tor variables identified using the two methods above.
Subsequently, nonsignificant predictors were pruned,
and model fit was compared using the Akaike infor-
mation criterion. Inferences are made only from this
final model, with significance set at p < 0.05. The
predictive ability of the final model was quantified
with calculated area under the Receiver Operating
Characteristic (ROC) curve (AUC). Due to the rela-
tively small size of our sample, we used leave-one-out
cross-validation to provide an unbiased assessment
of the model without splitting the available data into
training and validation data sets.

We used the above procedure to estimate a model
with only the qEEG/ERP variables as predictors for
the larger cohort (n = 161) as well as the cohort
with vMRI data (n = 111). We then determined the
effect of adding volumetric measures as predictors to
the model with qEEG/ERP predictors in the n = 111
cohort. All analyses were performed using SAS v 9.4
(SAS Institute, Cary, N.C.).
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RESULTS

Subject characteristics

Demographic characteristics of the sample are
summarized in Table 1. Patients with dementia (mean
age 74.3 (SD 8.0) years) were significantly older than
those with SCD (70.6 (6.5), p = 0.01). There were
significantly more females in the dementia group
(71.8%) compared to MCI (41.5%; p = 0.004). The
groups did not differ in mean years of education,
but each group differed significantly from the other
in MMSE scores (Dementia: 22.3 (4.4); MCI 27.2
(2.0); SCD: 28.7 (1.2), p < 0.0001). BMI was sig-
nificantly lower in the dementia group (22.5 (3.4))
compared to both MCI and SCI (25.5 (5.0) and 24.5
(3.8) respectively, p = 0.002). These characteristics
were consistent across the full sample, as well as
the subset of 111 patients with volumetric MRI data
(Table 1).

Model with only qEEG/ERP variables

Among the qEEG/ERP variables evaluated for
model inclusion (see Supplementary Table 1), P300b
amplitude, Reaction Time, and Commission Errors
were found to significantly differentiate participants
with SCD, MCI, and dementia (AUC = 0.79). Par-
ticipants with dementia and MCI had significantly
lower P300b amplitude than participants with SCD

(Table 2). Participants with dementia exhibited sig-
nificantly greater reaction time than participants with
MCI and SCD. All three groups differed from each
other significantly in Commission Errors (Table 2).

The same three qEEG/ERP predictors (P300b
amplitude, Reaction Time, and Commission Errors)
were obtained for the n = 111 subset of participants
who had vMRI data available, with a very simi-
lar AUC of 0.78. AUCs (and their 95% confidence
intervals) for pairwise differentiation of diagnostic
categories are presented in Table 3 (see also Supple-
mentary Figure 1 for the ROC curves).

Model with qEEG/ERP and vMRI variables

Amongst all the regional volumes tested for model
inclusion, using only the left temporal lobe (nor-
malized by intracranial volume) was sufficient to
differentiate cognitive diagnostic category with an
accuracy of 0.77. Left temporal lobe volume differed
significantly between all 3 groups (Table 2). Pairwise
differentiation of cognitive categories using this vol-
ume measure yielded AUCs that are very similar to
those using only qEEG/ERP measures (Table 3).

Using both the qEEG/ERP and vMRI variables
yielded a diagnostic accuracy of 0.87 in the multino-
mial logistic regression model. We present the odds
ratios and their associated confidence intervals for all
the predictors in the two single modality models as
well as the combined qEEG/ERP and vMRI model

Table 2
Quantitative EEG and volumetric MRI measures* by study groups

qEEG/ERP Sample (n = 161)
Dementia MCI SCD Group comparisons
(n = 39) (n = 53) (n = 69) F(2,156), p Post-hoc tests

P300b Amplitude 10.6 (5.3) 11.2 (4.9) 14.2 (7.3) 5.19, p = 0.007 dementia<SCD, p < 0.003;
MCI < SCD, p < 0.03

Reaction Time 618.2 (201.7) 554.6 (97.4) 529.8 (57.0) 6.08, p = 0.003 dementia>MCI, p < 0.05;
dementia > SCD, p < 0.0007

Commission Errors 18.6 (19.8) 6.6 (9.7) 2.3 (2.6) 31.71, p < 0.0001 all p < 0.0001

qEEG/ERP+vMRI Sample (n = 111)
Dementia MCI SCD Group comparisons
(n = 30) (n = 39) (n = 42) F(2,106), p Post-hoc tests

P300b Amplitude 10.3 (5.3) 11.0 (4.8) 13.8 (7.6) 3.34, p = 0.04 dementia<SCD, p < 0.02
Reaction Time 634.4 (217.3) 535.9 (68.9) 530.7 (55.1) 6.88, p = 0.002 dementia>MCI, p < 0.003;

dementia > SCD, p < 0.0006
Commission Errors 16.5 (16.1) 5.6 (7.8) 2.5 (3.1) 22.13, p < 0.0001 dementia>MCI, SCD, p < 0.0001;

MCI > SCD, p < 0.04
Left Temporal Lobe Volume∧ 78.5 (11.1) 91.4 (16.7) 99.1 (10.9) 19.02, p < 0.0001 dementia<SCD, p < 0.0001;

dementia < MCI, p < 0.009;
MCI < SCD, p < 0.0004

*Numbers indicate mean with standard deviation (SD). Note that while raw values are presented in the Table, log-transformed qEEG/ERP
measures were used for all analyses. Group comparisons (ANOVAs) controlled for age and gender for qEEG/ERP measures and total
intracranial volume additionally for vMRI measures. ∧F(2,105) for Left Temporal Lobe Volume, due to additional covariate.
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Table 3
Diagnostic accuracy of models with qEEG/ERP and vMRI predictors*

AUC (95% CI) Sensitivity Specificity
qEEG/ERP only

Dementia versus MCI 0.82 (0.72, 0.93) 80.0 79.5
Dementia versus SCI 0.87 (0.78, 0.96) 80.0 85.7
MCI versus SCI 0.72 (0.63, 0.82) 76.9 69.5

vMRI only
Dementia versus MCI 0.79 (0.70, 0.90)) 83.3 71.7
Dementia versus SCI 0.89 (0.81, 0.97) 76.7 92.9
MCI versus SCI 0.74 (0.63, 0.85) 71.8 71.4

qEEG/ERP+vMRI
Dementia versus MCI 0.86 (0.78, 0.94) 83.3 76.9
Dementia versus SCI 0.96 (0.91, 1.00) 96.7 95.7
MCI versus SCI 0.79 (0.69, 0.90) 79.5 71.4

*Results presented are for n = 111; qEEG/ERP variables are log-transformed before all analyses. AUC, Area under
Receiver Operating Characteristic curve.

Table 4
Significant quantitative EEG* and volumetric predictors of cognitive diagnoses: dementia, MCI, and SCD

OR$ (95% CI) � SE (�) Wald’s χ2 (1) p

qEEG/ERP predictors only
P300b Amplitude 0.36 (0.15, 0.89) –1.03 0.46 4.91 0.03
Commission Errors 3.28 (2.12, 5.08) 1.19 0.22 28.24 <0.0001
Reaction Time 26.00 (1.29, 526.12) 3.26 1.53 4.51 0.03

vMRI predictors only
Left Temporal Lobe Volume 0.36 (0.24, 0.54) –0.1 0.02 25.22 <0.0001

qEEG/ERP+vMRI combined
P300b Amplitude 0.25 (0.09, 0.69) –1.41 0.53 7.04 0.008
Commission Errors 2.96 (1.82, 4.82) 1.09 0.25 19.04 <0.0001
Reaction Time# 5.67 (0.18, 178.30) 1.73 1.76 0.97 0.2
Left Temporal Lobe Volume 0.37 (0.23, 0.57) –0.1 0.02 19.89 <0.0001

*qEEG/ERP variables are log-transformed before all analyses. $Odds ratio per unit increase in predictor, except for left temporal lobe volume
where OR presented is for an increase of 10 units. #Not significant in the combined model.

(Table 4). While P300b amplitude and Commission
Errors as well as left temporal lobe volume remained
significant predictors, Reaction Time was no longer
associated with cognitive category in the combined
model. Examining the pairwise AUCs, the predictive
performance of this combined qEEG/ERP and vMRI
model was superior to either of the two alone in all
cases (Table 3; Supplementary Figure).

DISCUSSION

We examined the potential use of a quantita-
tive electroencephalographic/event-related potential-
based cognitive testing system combined with an
automated volumetric magnetic resonance imaging
tool to detect various stages of cognitive impairment.
Together, these two methods differentiate SCD, MCI,
and dementia to a high degree of accuracy in this ‘real
world’ clinical sample. Specifically, just using P300b

amplitude and Commission Errors from qEEG/ERP,
in combination with left temporal lobe volume from
vMRI, is sufficient to predict SCD, MCI, and demen-
tia diagnoses accurately. Using just the qEEG/ERP
measures or the vMRI measures alone also lead to
reasonably accurate predictions; however, the com-
bined qEEG/ERP and volumetric MRI model was
shown to be superior. The accuracy of this combined
model is comparable to that of neuropsychological
assessments for differentiating diagnostic category
[31].

Our finding that P300b amplitude is a significant
predictor of cognitive impairment is consistent with
several earlier studies. P300b amplitude is known to
decrease with cognitive dysfunction [32] and increase
with better memory abilities in healthy controls. High
rates of commission errors, especially paired with a
slow reaction time, may indicate impaired attention
[33], which is common as cognition worsens in an
older population. We also found that left temporal
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volume atrophy is an important predictor of cog-
nitive function. MTL atrophy has been associated
with decreased performance on memory, language,
and orientation [34] and has been found to predict
dementia, particularly AD [9, 35, 36]. Although many
other regional volumes (including the right temporal
volume) were significantly different between our cog-
nitive categories, they did not add further explanatory
power to the prediction model, beyond what was pro-
vided by the left temporal lobe volume. Many authors
have focused on the hippocampus, when studying
MCI and onset of AD [37–39]. Our study includes
participants with dementia, not only AD. Since the
hippocampus is specifically related to new memory
formation, but cognitive impairment involves more
than just memory formation, it is not surprising that
our approach did not identify the hippocampus as the
primary predictor of cognitive diagnosis.

Patients in the study were categorized into diag-
nostic categories, namely SCD, MCI, and dementia,
by the study clinicians as part of their clinical work-
up. However, it is well-known that cognition exists
across a continuum and these cognitive categories are
based on approximate cut-offs along this continuum
[40–42]. Consequently, it may be possible to employ
Item Response Theory (IRT) and associated meth-
ods for the refinement and scoring of the measures to
arrive at a model of cognition. The premise of IRT
models is that a ‘causal’ common latent variable (in
this case, cognition) underlies the observed responses
(items) and as such, these responses are diagnostic of
an individual’s position on the underlying continu-
ous latent variable. Notwithstanding the challenges
of applying IRT [43], such models hold promise and
have been used to model the progression of cognitive
decline [44, 45].

Considering the importance of early detection
of cognitive impairment, these findings may also
provide insight into a novel method of identifying
patients at increased risk of dementia. The EEG mea-
sures in this predictive tool could, with or without
vMRI added to the model, be particularly useful in
certain clinical settings, such as rural areas, which
often lack economical, accessible, and comprehen-
sive neuropsychological assessments; it could also
be beneficial in situations in which patient tolera-
bility to lengthy diagnostic testing is low [46, 47].
The EEG assessment used in the current study is a
portable system, and thus can be delivered to where
the patient is located for testing. Importantly, given
that online cognitive assessments are becoming better
and more accessible, combined use of online memory

testing with portable EEG assessment and telehealth
services may allow for entirely remote-based early
detection of cognitive decline. In addition, this study
demonstrates the advantage of combining data from
qEEG and volumetric imaging to aid the clinician
in determining a diagnosis. Initial stages of cogni-
tive impairment are heterogeneous and complex [48,
49] and finding tools and assessments to specifically
differentiate SCD and MCI has proven difficult. How-
ever, the combined qEEG/ERP and vMRI model was
able to distinguish between the two stages with a rel-
atively high degree of accuracy. In routine clinical
care, this model may be an important adjunct to tra-
ditional assessments in distinguishing between SCD
and MCI, thus allowing clinicians to implement pre-
ventative care sooner. Earlier intervention is crucial
to limit the rate of disease progression and provide
patients with greater autonomy and quality of life.

Strengths of the current study include the rela-
tively large real-world clinical sample, and the use
of two physiological tools, both with easy access,
to differentiate SCD, MCI, and dementia. It is also
notable that we found the same three qEEG/ERP
predictors in the larger cohort as well as the sub-
set which had quantitative volumetric data available,
indicating the robustness of the model. However,
future studies should replicate these findings in a
larger, more racially and ethnically diverse sample,
when other qEEG features and regional volumes may
become important. As this study utilized a conve-
nience sample of the patients who presented to Pacific
Brain Health Center (PBHC) in Santa Monica, CA
with memory and/or other cognitive complaints, it
does not include a healthy control group, and there
was a significant age difference between participants
with dementia and SCD. Incorporating genetic test-
ing results in a predictive model, either in the form
of a polygenic risk score or as specific genetic risk
variants, is desirable as well, if such results are avail-
able. Further, it would be informative to subtype
the MCI patients into amnestic and non-amnestic,
to determine if amnestic MCI had similar patterns
on qEEG/ERP and vMRI as patients with dementia.
Additionally, future research should examine lon-
gitudinal cohorts to track changes in qEEG/ERP
and vMRI features over time and how these may
impact cognitive classification. Nevertheless, this
study represents an important first step in using easily
accessible, mobile functional mapping tools to help
increase the diagnostic certainty of SCD, MCI, and
dementia and to improve the early and correct identi-
fication of patients who might otherwise go untreated.
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